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Accuracy of universal formulas for percolation thresholds based on dimension
and coordination number
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Recent mathematical results regarding percolation thresholds are relevant to efforts to find universal formu-
las for the percolation threshold. This Brief Report uses exact solutions and recent rigorous bounds for site and
bond percolation thresholds to demonstrate that any universal formula based on only the dimension and the
coordination number must provide estimates differing substantially from the true threshold value for some
lattices.
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I. INTRODUCTION AND HISTORY

Since the early development of percolation theory, th
have been efforts to find a universal formula, based o
small number of features of the underlying lattice, for p
dicting the values of the percolation threshold for all latti
graphs. For example, Vyssotsky, Gordon, Frisch, and H
mersley@1# studied bond percolation on eight regular tw
and three-dimensional lattices, commented that ‘‘pc appears
to be little affected by differences of lattice type if the num
ber of dimensions and coordination number are the sam
and mentioned the approximation

pc5
d

~d21!q
, ~1!

whered is the dimension of the lattice andq is the coordi-
nation number~or vertex degree! of the lattice.

For site percolation, the formula

pc5
d

~d21!~q21!
~2!

was proposed by Sahimiet al. @2# for d>3. An alternative
formula for site models,

pc5
1

Aq21
, ~3!

proposed by Galam and Mauger@3,4# obtained good results
in two dimensions, but not for higher dimensions.

Galam and Mauger@5,6# provided excellent estimates fo
several lattices using the power law formula

pc5p0@~d21!~q21!#2adb, ~4!

where the parametersp0 , a, andb were determined by a fi
to known percolation threshold values. The lattices stud
were classified into three universality classes. For the
classes of lattices with dimensionsd<7, b50 for site per-
colation andb5a for bond percolation. One of these class
includes the two-dimensional square, triangular, hexago
and dice lattices, for whichp050.8889 anda50.3601 for
site models andp050.6558 anda50.6897 for bond models
The other class includes the Kagome´ lattice and other lattices
1063-651X/2002/66~2!/027105~4!/$20.00 66 0271
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with 3<d<7, for whichp051.2868 anda50.6160 for site
percolation andp050.7541 anda50.9346 for bond perco-
lation. For the lattices considered in@5#, the maximum de-
viation of the formula from numerical estimates is60.008.
However, the universality classes are not precisely define
terms of properties of the lattice graphs, so it may be unc
which class a new lattice belongs to.

In @6#, Galam and Mauger extended their formula to no
regular lattices~i.e., those that do not have a single coord
nation number for all vertices!, via the use of an effective
parameterqeff to replace the average coordination numberq.
They suggest that their formula has predicting ability f
percolation thresholds which have not yet been compu
For example, if the site threshold of a lattice has been e
mated,qeff can be computed from the formula for site thres
olds, and can be used to predict the bond threshold from
formula for bond thresholds.

Although the formulas of Galam and Mauger are in e
tremely good agreement with simulation estimates for
lattices studied, some numerical discrepancies have b
noted in the past. Van der Marck@7# noted that, if there is to
be a universal formula for percolation thresholds, it needs
be based on more information thand and q only. As ex-
amples, he provides two three-dimensional lattices withd
53 and q58, the body centered cubic lattice and th
stacked triangular lattice. Their site percolation threshold
timates are 0.246 and 0.2623 respectively, with bond pe
lation estimates of 0.1803 and 0.1859, respectively. Ba
lievski @8# investigated and confirmed a discrepancy of 0.0
in the estimate for the value of the bond percolation thre
old of the ferrovariant of the dodecagonal lattice.

Researchers have considered other means of develo
universal formulas for the percolation threshold, based o
minimal spanning tree approach@9–11#, lattice Green func-
tions @2#, filling factors @12#, and preferred directions fo
cluster formation@13#.

II. DIMENSION AND COORDINATION NUMBER

Recent mathematical analysis of percolation
Archimedean lattices shows that percolation threshold
proximation formulas based only on dimension and coor
nation number must necessarily have large errors for so
graphs. Archimedean lattices are vertex-transitive gra
with a planar representation that is a tiling of the plane
©2002 The American Physical Society05-1
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regular polygons.~A vertex-transitive graph is one in whic
all vertices are equivalent, i.e., for any pair of vertices, th
is a graph isomorphism which maps one into the oth!
There are exactly 11 Archimedean lattices@14#. We denote
each Archimedean lattice by a sequence of integ
(n1 ,n2 , . . . ,nk) for somek, where theni denote the numbe
of sides of successive faces as one moves around a s
vertex. ~For conciseness, an exponent is used to indica
number of successive faces of the same size.! Several
authors—d’Iribarne, Rasigni, and Rasigni@11#, van der
Marck @15#, Suding and Ziff@16#, Ruskin and Cadilhe@17#,
and Wierman@18,19#—have considered various percolatio
models on Archimedean lattices.

We first discuss why there must be substantial errors w
predicting bond percolation thresholds based only on dim
sion and coordination number. Four of the 11 Archimede
lattices are regular graphs with coordination numberq53.
The exact bond percolation threshold for the (36) lattice,
called ‘‘hexagonal’’ or ‘‘honeycomb,’’ is 122sin(p/18)
50.6527 . . . . This value was derived by Sykes and Ess
@20# and proved by Wierman@21#. Wierman @19# used the
substitution method to determine the following rigoro
bounds for the bond percolation threshold for thr
Archimedean lattices:

0.7385,pc@~3,122! bond#,0.7449, ~5!

0.6430,pc@~4,6,12!bond#,0.7376, ~6!

0.6281,pc@~4,82! bond#,0.7201. ~7!

Thus, among the Archimedean lattices withd52 andq53,
the bond percolation thresholds can have a difference o
least 0.0858.

Furthermore, Wierman@22# constructed a sequence
planar periodic fully triangulated graphs with bond perco
tion thresholds converging to zero. Since the bond perc
tion thresholds of dual lattices add to 1, the sequence of d
lattices of these fully-triangulated lattices has percolat
thresholds converging to 1. However, the dual of a fully t
angulated lattice is a regular lattice with coordination nu
ber q53. Therefore, bond percolation thresholds of lattic
with d52 andq53 range between 0.6527 and 1, an inter
of length 0.3473. Consequently, any bond percolation thre
old estimate from any universal formula based on only
dimension and the coordination number must differ from
true threshold by at least half the length of this interv
0.1736, for at least one lattice.

For site models, the discrepancy in predictions that
currently be proved mathematically is not as large as
bond models. For the four Archimedean lattices withd52
andq53 we have the following exact solutions and boun
@18,23#:

pc@~3,122!site#50.807 900 764 . . . , ~8!

0.707 10<pc@~4,82! site#<0.799 97, ~9!

0.721 73<pc@~4,6,12!site#<0.818 98, ~10!
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0.652 703 6 . . .<pc~hexagonal site!<0.794 72. ~11!

The range of values is at least the difference between
exact threshold of the (3,122) lattice and the upper bound fo
the hexagonal lattice, which is 0.013 18, implying an error
at least 0.006 59 for one graph. Such errors are within
range of accuracy, 0.008, claimed by Galam and Mauger,
example. However, simulations provide estimates of
proximately 0.697 043 for the site percolation threshold
the hexagonal lattice, which would imply a substantia
larger error in such formulas.

Note that Galam and Mauger divide the low-dimension
lattices into two classes, with a different formula for ea
class. This approach may eliminate errors of the size m
tioned above for site models. For bond models, however
infinite collection of the examples must fall into one of th
two classes, so there must still be substantial inaccuracy

III. EFFECTIVE COORDINATION NUMBER

The success of the effective coordination number
proach requires that the bond percolation thresholds
graphs be close if their site percolation thresholds are clo
Unfortunately, the class of periodic fully triangulated grap
studied in@22# all have site percolation thresholds equal
one-half, but the bond percolation thresholds range from n
zero to 2 sin(p/18)50.3473 . . . .Thus, the procedure of pre
dicting bond thresholds from the site threshold will be ina
curate by at least 0.1736 for at least one of these lattices
any such formula.

For example, the Galam and Mauger site threshold form
las, solved forqeff when sitepc51/2, give a value ofqeff
55.942 269 for class 1 andqeff55.639 41 for class 2, lead
ing to bond threshold predictions ofpc50.351 391 for class
1 andpc50.343 475 for class 2. Thus, there are discrep
cies as large as 0.343 475, even though two formulas
used.

IV. LACK OF MONOTONICITY

In the formulas of@1–6#, for fixed dimension the perco
lation threshold is a monotonically decreasing function of
average coordination number. A recent counterexample
Wierman @24# involves two two-dimensional lattices with
bond percolation thresholds and average degrees in the s
order, violating the monotonicity in the formulas: A modifi
cation of the (3,122) lattice has bond percolation thresho

between 0.695 23 and 0.698 25 and average degree3
4 ,

which may be compared to the hexagonal lattice, with ex
bond threshold 0.6527 . . . anduniform coordination number
3. Since the difference in the thresholds is at least 0.042
any monotone formula must err by at least half this amou
or 0.021 26, for one of these lattices. The counterexam
can be converted into site models, by the bond-to-site tra
formation and containment principle, for which monoto
formulas must err by at least 0.021 26 also.

Furthermore, a different counterexample of Wierman@25#
shows that two lattices may have bond percolation and
percolation thresholds in the opposite order. If universal f
mulas for bond percolation and site percolation thresho
5-2
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were monotone function of the average coordination num
this would not be possible.

V. BOND-TO-SITE TRANSFORMATION

The bond-to-site transformation converts any bond per
lation model on a lattice to an equivalent site percolat
model on theline graph or covering graphof the lattice.
Note that for a regular graph with coordination numberq, the
covering graph has coordination number 2q22. Therefore,
discrepancies will arise if the bond percolation threshold
coordination numberq does not agree with the site percol
tion threshold for coordination number 2q22.

For example, the bond percolation threshold of t
Kagomélattice, which has coordination number 4, is equal
the site percolation threshold of its covering graph, wh
has coordination number 6. However, since the Kagome´ lat-
tice is in class 2, the Galam and Mauger formula estimate
bond threshold as 0.5162, while its covering graph has
threshold estimated as 0.4979 if it is in class 1 and 0.477
it is in class 2. Nearly exact mathematical bounds exist
the Kagome´ lattice bond threshold@26#, for which 0.5209
<pc(Kagomébond)<0.5291. Thus, the discrepancy is
least 0.0230 for the site percolation threshold of the cover
graph of the Kagome´ lattice.

VI. DUALITY

An important theoretical result in mathematical perco
tion theory, due to Kesten@27#, is that bond percolation
thresholds of a dual pair of periodic planar lattices sum to
The formulapc5d/(d21)q satisfies this property, as a con
sequence of Euler’s formula for planar graphs. However,
property is not satisfied for the other formulas mention
above.

For example, the Kagome´ lattice falls into Galam and
Mauger’s class 2 and its dual, the dice lattice, falls into cl
1. Since both have average degree equal to 4, the form
produce the estimates 0.5162 and 0.4958, respectively, w
sum to 1.0120. Thus, at least one of the threshold estim
must be in error by at least 0.006. In fact, mathemati
bounds of

0.5209<pc~Kagomébond!<0.5291 ~12!

and, consequently,

0.4709<pc~dice bond!<0.4791, ~13!

have been proved@26#. Thus, the inaccuracy is at lea
0.0037 for the Kagome´ lattice and 0.0167 for the dice lattice

VII. CONCLUSIONS AND DISCUSSION

This Brief Report reports on recent mathematical res
which prove exact results and rigorous bounds for perc
tion thresholds, showing that the inaccuracy of universal
mulas based only on the dimension and coordination num
is much larger than indicated by previous evidence. In p
ticular, any universal formula depending upon only dime
02710
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sion and average coordination number must err by at le
0.1736 for at least one planar lattice, as shown in Sec
Furthermore, any such universal formula that is monotone
the average coordination number must err by at le
0.021 26 for some graph, due to the lack of monotonicity
the percolation threshold as a function of the average co
dination number. Similarly, lack of consistency with th
bond-to-site transformation and planar graph duality also
poses inaccuracies in the predictions of such universal
mulas. The sizes of the discrepancies established in S
II–VI are minimums, established by mathematical pro
Simulation estimates indicate discrepancies that are con
erably larger in some cases.

It is important to note that the discrepancies exhibited
obtained with any universal formula depending only on
mension and coordination number. The mathematical res
provide bounds on the accuracy of the predictions of
entire class of universal formulas. Galam and Mauger’s f
mulas were not singled out for criticism, but used as e
amples precisely because they are the most accurate form
to date.

The main theme of this Brief Report is that just dimensi
and average degree~or even a measure of effective avera
degree! are insufficient to explain the variation in percolatio
thresholds. The introduction of a third explanatory variable
a natural approach to this problem. The use of universa
classes in Galam and Mauger’s formula essentially int
duces another explanatory variable to obtain better pre
tions, although the nature of the variable and its depende
on the lattice structure are not clearly defined.

Other approaches to developing universal formulas h
been proposed, in addition to those involving dimension a
average degree. However, these approaches must also
with issues such as lack of monotonicity, consistency rela
to the bond-to-site transformation, and consistency with
ality for planar graphs. For example, Suding and Ziff@16#
and others use a filling factor to obtain excellent estimate
site percolation thresholds of Archimedean lattices. Ho
ever, they note that their method does not apply as well w
nonregular graphs. In fact, the percolation behavior depe
only on the adjacency structure of the lattice graph, wh
being independent of its planar representation. Thus,
cannot expect filling methods to fully capture the complex
of the dependence of the percolation threshold on the
tailed structure of the underlying graph.

The comments in this paper demonstrate that develop
accurate universal formulas for percolation thresholds
much more challenging that previously believed. Explaini
the dependence of the percolation threshold on the deta
structure of the lattice is an important and interesting pr
lem, worthy of further attention. It is hoped that this note w
help influence and stimulate further research on this probl
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